SH-60 LAMPS MK III Seahawk




The Seahawk is a twin-engine helicopter. It is used for anti-submarine warfare, search and rescue, drug interdiction, anti-ship warfare, cargo lift, and special operations. The Navy's SH-60B Seahawk is an airborne platform based aboard cruisers, destroyers, and frigates and deploys sonobouys (sonic detectors) and torpedoes in an anti-submarine role. They also extend the range of the ship's radar capabilities. The Navy's SH-60F is carrier-based. Some versions, such as the Air Force's MH-60 G Pave Hawk and the Coast Guard's HH-60J Jayhawk, are equipped with a rescue hoist with a 250 foot (75 meter) cable that has a 600 pound (270 kg) lift capability, and a retractable in-flight refueling probe. The Army's UH-60L Black Hawk can carry 11 soldiers or 2,600 pounds (1,170 kg) of cargo or sling load 9,000 pounds (4,050 kg) of cargo. The UH-60 Black Hawk was fielded by the Army in 1979. The Navy received the SH-60B Seahawk in 1983 and the SH-60F in 1988. The Air Force received the MH-60G Pave Hawk in 1982 while the Coast Guard received the HH-60J Jayhawk in 1992. The SH-60B typically has a crew of three: a pilot, an airborne tactical officer (ATO) and a sensor operator, or “senso.” The ATO is responsible for the tactical situa-tion, deciding what assets will be used to prosecute the target and handling the coordination of other assets on scene. The sensor operator is an enlisted Sailor who operates the radar and magnetic anomaly detector (MAD) equipment, interprets acoustic data and performs SAR rescues. All sensos must maintain their qualifications as rescue swimmers.

LAMPS is the acronym for Light Airborne Multipurpose System. The SH-60B helicopter is configured specifically in response to the LAMPS requirement of the U.S. Navy. The LAMPS MK III system bas been designed to the Navy's sea control mission. In fulfilling the mission, LAMPS MK III will encounter a threat that has many dimensions. The threat encompasses a hostile submarine fleet and missile-equipped surface ships. The system extends the search and attack capabilities of LAMPS MK III configured destroyer, frigate, and cruiser platforms,deploying helicopters directly from these ships.

The primary missions of the LAMPS MK III are those of ASUW and ASW. Aircraft prior to BUNO 162349 are capable of the antiship surveillance and targeting (ASST) and ASW roles only. Effective with BUNO 162349 and subsequent, LAMPS MK III are equipped to employ the Mk 2 Mod 7 Penguin missile. LAMPS MK III equipped with the missile can be used in the additional role of ASUW attack.

In an ASW mission, the aircraft is deployed from the parent ship to classify, localize, and potentially attack when a suspected threat has been detected by the ship's towed-array sonar, hull-mounted sonar, or by other internal or external sources. When used in an ASUW mission, the aircraft provides a mobile, elevated platform for observing, identifying, and localizing threat platfoms beyond the parent ship's radar and/or electronic support measure (ESM) horizon. When a suspected threat is detected, classification and targeting data is provided to the parent ship via the datalink for surface-to-surface weapon engagement. Penguin missile equipped aircraft may conduct independent or coordinated attack, dependent upon the threat and tactical scenario.

Secondary missions include search and rescue (SAR), medical evacuation (MEDEVAC), vertical replenishment (VERTREP), naval gunfire support (NGFS), and communications relay (COMREL). In the VERTREP mission, the aircraft is able to transfer material and personnel between ships, or between ship and shore. In the SAR mission, the aircraft is designed to search for and locate a particular target/object/ship or plane and to rescue personnel using the rescue hoist. In the MEDEVAC mission, the aircraft provides for the medical evacuation of ambulatory and litterbound patients. In the COMREL mission, the aicraft serves as a receiver and transmitter relay station for over-the-horizon (OTH) communications between units. In the NGFS mission, the aircraft provides a platform for spotting and controlling naval gunfire from either the parent ship or other units.

Equipment of the SH-2G includes an AQS-18A dipping sonar, an ARR-84 sonobuoy receiver, AQS magnetic anomaly detector, LN-66 radar and AKT-22 data link. Also, a 600 kg rescue hoist can be installed. Small arms mountings for guns and 2.75 inch rockets are available. The SH-60F uses a variable depth sonar and sonobuoys to detect and track enemy submarines. Detection is primarily accomplished by using the AQS-13F dipping sonar which is deployed on a 1575 foot cable while the aircraft hovers 60ft above the ocean. The pilots are assisted in maintaining their 60ft day or night all weather hover by an automatic flight control system.

There are two data link antennas--one forward and one aft on the underside of the aircraft. The search radar antenna is also located on the underside of the aircraft. Other antennas (UHF/VHF, HF, radar altimeter, TACAN, ESM, sonobuoy receivers, doppler, ADF, IFF, and GPS) are located at various points on the helicopter. The left inboard, left outboard, and right weapon pylons accommodate BRU-14/A weapon/stores racks. Fittings for torpedo parachute release lanyards are located on the fuselage aft of each weapon pylon. Effective on BUNO 162349 and subsequent, the left and right inboard pylons have wiring and tubing provisions for auxiliary fuel tanks. All pylons have wiring provisions to accommodate the MK 50 torpedo. The left outboard weapon pylon can accommodate a missile launch assembly (MLA) which is used to mount the MK 2 MOD 7 Penguin air-to-surface missile.

The magnetic anomaly detector (MAD) towed body and reeling machine are mounted on a faired structure that extends from the forward tail-cone transition section on the right side of the aircraft. It is positioned above and aft of the right weapon pylon. The sonobuoy launcher is located on the left side of the aircraft above the left weapon pylon. The sonobuoy launcher is loaded from ground level outside the aircraft. Sonobuoys are pneumatically launched laterally to the left of the aircraft.

The airborne RAST system main probe and external cargo hook are on the bottom fuselage centerline, just aft of the main rotor center line. Fuel service connections, for both gravity and pressure refueling, are located on the left side of the aircraft aft of the weapon pylons. Dual-engine waterwash is manifolded from a single-point selector valve connector on the left side of the aircraft above the sensor operator's (SO) window. The long strokes of both main and tail wheel oleos are designed to dissipate high-sink-rate landing energy. Axle and high-point tiedowns are provided at each main gear. Fuselage attachments are provided above the tail gear for connection to the RAST tail-guide winch system allowing aircraft maneuvering and straightening aboard ship (41k) and for tail pylon tiedown. Emergency flotation bags are installed in the stub wing fairing of the main landing gear on both sides of the aircraft.

The easiest way to externally identify a LAMPS helicopter is the large cylindrical fairing under the nose, housing the 360-degree- a MAD, an electronic surveillance/ support measures (ESM) system, missile jamming equipment and missile plume detectors. The SH-60B can be armed with both MK 46 and MK 50 torpedoes and a single M60 machine gun. A recent SH-60B modification incorporated the ability to carry the AGM-119B Penguin missile, giving the Seahawka potent surface strike capability. The Global Positioning System has also become standard equipment on most SH-60Bs. Some LAMPS MK III Seahawksalready carry Hellfire missiles and night vision goggles. In addition, funding has been allo-cated to retrofit all SH-60Bs in the HSL community with forward-looking infrared (FLIR) sensors.

 

posted by Urooj on 12:43 PM under

0 comments:

Search